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Axial and angular correlations between colloidal particles in narrow cylindrical pores
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In this work we present a study of the local structure of a model colloidal suspension highly confined inside
a cylindrical pore. Such a study is based in Monte Carlo computer simulations, using the repulsive part of the
Derjaguin-Landau-Verwey-Overbeek potential as the pair interaction between particles. The structural proper-
ties calculated here are the concentration profilen(r), the axial pair correlation functiong(z), and the axial-
angular pair correlation functiong(z,w). The behavior of these quantities is analyzed as a function of the
density of colloidal particles in the restricted space, and as a function of the size of the pore.

PACS number~s!: 82.70.Dd, 05.40.2a
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I. INTRODUCTION

When a colloidal suspension is under the influence of
external field the local density of particles, uniform in th
absence of the field, varies from point to point in space@1#.
The external field can be gravity, an electrical field appl
on a charged system, or even a wall that confines the sus
sion within a given region of space. In the last few yea
theoretical and experimental work has been carried ou
this class of systems@2,3#. On the experimental side, by us
ing optical techniques such as laser trapping and video
croscopy, the effective two-dimensional~2D! static structure
and the effective 2D interaction potential of colloidal pa
ticles confined between two glass plates have been meas
@3#. On the theoretical side, employing theoretical schem
mainly borrowed from the theory of simple liquids, and
the Derjaguin-Landau-Verwey-Overbeek~DLVO! level of
description for the pair potential between particles@4,5#, the
concentration profile of colloidal suspensions in front of
wall, or confined in a slit pore, has been calculated and c
pared with simulation results@2#. At this same level of de-
scription the equilibrium structure of a colloidal suspens
confined inside a cylindrical pore has also been studied@6,7#
in terms of the local concentration profile of the particles

In the present work we will be concerned with the sa
system, namely, a colloidal suspension confined in a cy
drical pore, but here we study the structure of the suspen
in terms of the pair correlations between the particles,
not only of the wall-particle correlations~i.e., the concentra-
tion profiles!. In particular, we will be interested in the pa
correlations along the axis, and also in the angular pair c
relations when the colloidal suspension is under severe
finement, for which we will employ a standard Monte Car
~MC! simulation technique@8#.

As in previous work@6#, the system we have in min
consists of colloidal particles of chargeQ suspended in a
polar solvent, and confined in the interior of a very lo
cylindrical capillary with surface chargesc . Following Ref.
@6# we will base our study on the DLVO level of descriptio
for the particle-particle interaction, and for the wall-partic
interaction. Thus, we shall model the interaction poten
PRE 621063-651X/2000/62~4!/5179~8!/$15.00
n

d
en-
,
in

i-

red
s,
t

-

e
-

on
d

r-
n-

l

between two particles,u(r ), as the repulsive part of the
DLVO potential, i.e.,

bu~r !5buHS~r !1Ap

exp@2zD~r /s21!#

~r /s!
, ~1.1!

whereuHS(r ) is the hard-sphere potential,b215kBT, with
kB being Boltzmann’s constant andT the temperature, and
zD[ks with k being the inverse Debye length ands the
diameter of the particles.Ap is, in units ofkBT, the potential
energy of two particles at contact. As for the wall-partic
potentialC(r ), we will use

bC~r!5Aw

I 0~kr!

I 0~kR8!21
, r,R8, ~1.2!

with r being the distance from positionr to the cylinder’s
axis. This form of the potential derives from solving th
linearized Poisson-Boltzmann equation for an electrol
confined inside the charged cylinder. In this equationI 0(x) is
the zeroth-order modified Bessel function, andR8 is the dis-
tance from the cylinder axis to the point at which a particle
in contact with the cylinder’s inner hard wall. Thus, ifR is
the actual radius of the cylinder, thenR8[R2s/2. In units
of kBT, we have thatAw in Eq. ~1.2! is the electrostatic
potential of a particle in contact with the cylinder wall, re
ferred to the potential at the center of the cylinder.

II. STRUCTURE AND SIMULATION DETAILS

In this work we perform Monte Carlo simulations in th
NVT ensemble@8#. To do this, we build a cylindrical simu
lation box whose length is calculated through the relationL
5N@pR2nc#

21, whereN is the number of particles used i
the simulation runs,R is the radius of the cylinder, andnc is
the number density of particles in the cylinder. In this wa
the volume of the basic simulation box isV5pR2L. In order
to minimize edge effects due to the finite size of the simu
tion box, conventional periodic boundary conditions in thez
direction have been used@8#. Once the interaction potential
have been given, theN particles are first randomly placed i
5179 ©2000 The American Physical Society
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5180 PRE 62M. CHÁVEZ-PÁEZ et al.
the simulation cell, and then are allowed to move accord
to the Monte Carlo scheme, until equilibrium is reached. O
criterion for the equilibrium is the stabilization of the fluc
tuations of the potential energy. Once equilibrium is reach
further configurations are generated in order to calculate
properties of interest.

The basic structure of the colloidal suspension inside
cylinder is given by the one-particle correlation functio
n(r ) ~the concentration profile! and by the two-particle dis
tribution functionn(2)(r ,r 8) @9#. Due to the symmetry of the
system the concentration profile becomes a function of
distance to the cylinder’s axis, i.e.,n(r )5n(r). In order to
calculate the simulatedn(r) we divide the simulation box in
concentric cylindrical shells of lengthL, radiusr, and width
Dr. We then count the number of particlesN(r) within the
volumeDV5p@(r1Dr)22r2#L, and then compute the av
erage

n~r!5 K N~r!

DV L
conf

, ~2.1!

where the angle bracketŝ&conf indicate an average ove
many simulated configurations.

On the other hand, the inhomogeneous pair correla
function g(2)(r ,r 8)[n(2)(r ,r 8)@n(r )n(r 8)#21 is a more dif-
ficult quantity to calculate in the simulations. Instead
working with the full pair correlation function we will work
with contracted versions of this function. The key to t
appropriate definition of these correlation functions is
exact normalization condition@9#

Nb~Nb21!5E E n(2)~r1 ,r2!dr1dr2

5E E g(2)~r1 ,r2!n~r1!n~r2!dr1dr2 ,

~2.2!

whereNb is the number of particles in the volumeVb . By
applying this later equation to our simulation box we see t
it is possible to define the function

n~z,w![
1

NE g(2)~r1 ,r2!n~r1!n~r2!r1r2dr1dr2dz1dw1

5S 2pL

N D E g(2)~r1 ,r2 ,z,w!n~r1!n~r2!

3r1r2dr1dr2 , ~2.3!

where we have used the fact that, due to the symmetry of
system, the function g(2)(r1 ,r2) can be written as
g(2)(r1 ,r2 ,z,w), with z5z22z1 and w5w22w1. From its
definition,n(z,w) is the mean particle density in the volum
element~a disk! delimited by the surfacesz andz1dz, and
by the surfacesw and w1dw, all these four surfaces mea
sured from a particle that it is located at the point (z50,w
50). The functionn(z,w) defined through Eq.~2.3! satisfies
the conditionn(z→`,w)5N/2pL. This limiting condition
allows us to define the function
g
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g~z,w!5nw
21n~z,w!

5nw
22E g(2)~r1 ,r2 ,z,w!n~r1!n~r2!r1r2dr1dr2

~2.4!

~with nw[N/2pL), which satisfies the normalization cond
tion

E nwg~z,w!dzdw5N21. ~2.5!

Equation~2.5! is equivalent to the normalization conditio
that the well-known radial distribution function satisfies f
an homogeneous simple fluid@9#. In fact, from Eq.~2.5! we
see thatg(z,w) is the factor that modulatesnw to give the
local densityn(z,w) in the volume element around the poi
(z,w). Thus,g(z,w) determines the pair angular correlatio
along the axis of the cylinder.

In its turn, g(z,w) also allows the definition of anothe
pair correlation function, namely, the axial pair correlati
function,g(z), through the relation

g~z!5
1

2pE g~z,w!dw5
L

NE n~z,w!dw, ~2.6!

which satisfies

E nlg~z!dz5N21, ~2.7!

wherenl5N/L is the number of particles per unit length
i.e., the lineal mean number density. As we see from
~2.7!, g(z) determines the pair correlations along the axis
the cylinder.

The determination of these correlation functions in t
simulations is based on the definitions above. Operationa
the axial pair correlation functiong(z) is defined through the
relation

g~z!5 K N~z!

ncDVL
conf

, ~2.8!

whereDV5pR2Dz. Here N(z) is the number of particles
inside a disk of radiusR and widthDz, located at a distance
z from the central particle which is located at (r0 ,z050,w0
50), i.e., the origin of coordinates is located in the center
the cylinder in such a way that the reference particle is
cated along thex axis, and in the planez50, regardless of its
distancer0 to the axis. From its definition,g(z) gives infor-
mation of the ordering along thez axis.

On the other hand, the axial-angular correlation funct
g(z,w) can be determined through the relation

g~z,w!5 K N~z,w!

ncDV L
conf

, ~2.9!

whereDV5(R2/2)DzDw, andN(z,w) is the number of par-
ticles laying in the region betweenz andz1Dz, and forming
an angle betweenw and w1Dw with the central particle
located at the point (r0 ,z050,w50). The function thus de-
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fined gives information on the angular order between
particles and on how this order changes along the axis of
cylinder.

III. RESULTS

As it was mentioned before, our system consists o
model colloidal suspension confined in the interior of a c
inder, and the particle-particle and wall-particle interactio
are given by Eqs.~1.1! and~1.2!. In this work we will focus
on the evolution of the structure of the particles as a funct
of nc and of the size of the cylinderR. This means that we
will fix all the other parameters defining the system, and w
keep track of the structure as we let bothnc andR to vary.
The values of the parameters we will keep fixed areAp
5400, Aw5400, andzD50.15. For the simulation runs w
useN5200 particles. In every run the initial configuratio
was set to equilibrate over 10 000 Monte CarloN cycles~in
the basic MC cycle, a particle is selected randomly for d
placement; anN cycle consists ofN basic MC cycles!, and
150 000 furtherN cycles were generated for the statistic
averages. For the averages, we took the configurations
erated after everyN cycle.

A. Concentration profiles

Let us first present the corresponding results forn* (r)
5n(r)s3 as we vary the mean number density of partic
inside the cylinder and the size of the cylinder. The fi
process can be achieved by externally compressing the
loidal suspension, or if we imagine that the cylinder is co
nected to a reservoir with bulk densitynb , by increasingnb .
The other process can be achieved by connecting cylin
of different sizes to the reservoir.

Figure 1 is a sequence in which we illustrate the behav
of the concentration profile as a function ofnc* [ncs

3 andR.
In each figure the number densitync* takes the valuesnc*
5331024, nc* 5631024, nc* 5631024, whereasR takes
the valuesR530s, R520s, and R510s. Let us discuss
briefly the features ofn* (r) appearing in this figure.

Figure 1~a! corresponds toR530s. Here we see that, as
result of increasingnc* , the main peak ofn* (r) is displaced
towards the wall, whereas the height of the peaks increa
Since the height of the curves indicates how concentrate
the system in a given point, it is readily seen that the p
ticles are structured in layers, which is one of the most
teresting features of the concentration profiles. It is also e
dent that this layering structure is emphasized as the par
density increases since the height of the peaks bec
higher. These effects are the result of the equilibrium of t
opposite trends, one which tends to confine the particle
the center of the cylinder and that is due to the interact
with the wall, and another in which the particles tend
occupy as much space as possible as a result of the repu
interactions between them. This tendency towards expan
is higher asnc* increases, since the mean distance betw
particles is reduced.

The effects on the concentration profile due to the red
tion of the available space is illustrated in Fig. 1~b!. In this
caseR520s and the rest of the parameters were kept c
stant. From this figure we see that the different concentra
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profiles have fewer peaks, compared with the caseR530s,
although the height of the different peaks is much high
which means that the layering structure is much more p
nounced in this case. It is interesting to see that the conc
tration profile fornc* 5631024 consists of two disconnecte
regions, one high single peak at the center of the cylin
and one single peak located atr'8.5s, leaving a gap in the
region 4s,r,6s. In the central peak the particles are a
ranged along the axis, with little space on the radial dir
tion, whereas the particles in the other peak are arrange
such a way that they form a cylindrical shell of widthDr
'2.5s, and centered atr'8.5s. On the other hand, the
curve correspondingnc* 5331024, earlier consisting of a

FIG. 1. Reduced concentration profilesn* (r)5n(r)s3

(3103) for a system with parametersAp5400, Aw5400, zD

50.15. ~a! R530s; ~b! R520s; ~c! R510s.
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two-peak structure, now has one single peak. In this c
particles only arrange themselves in a cylindrical shell
width Dr'2s, centered atr'7s.

By further reducing the size of the pore we see that
trends just discussed are emphasized. Figure 1~c! presents
the concentration profiles for the caseR510s. In this case
we see that the concentration profiles consist of a single p
for all the three values ofnc* used here. In this case, how
ever, the particles of the suspension are highly confined s
the gap between the particles and the wall is about 6s, i.e.,
more than half of the cylinder radius. The figure shows t
n* (r) changes from a two-peak structure in Fig. 1~b!, to a
one-peak structure in the current figure for the casenc*
5931024. On the other hand, the structure fornc* 53
31024 and nc* 5631024 consists of a single peak at th
center of the cylinder, sharper fornc* 5331024 than for
nc* 5631024. As we will see later, the confinement of th
particles into self-confined structures has important effe
on the correlations between particles.

B. Axial pair correlations

In Sec. III A the main features of the concentration profi
were shown. However,n(r) comes from the average of th
positions of the particles without taking into account th
relative order. Thus, it only gives information of the avera
local density of particles as a function of the distancer from
the center of the cylinder. In order to get more informati
about the three-dimensional~3D! ordering between the par
ticles we now present our results for the axial pair correlat
function,g(z), for the cases presented in Fig. 1.

In Fig. 2~a! we plot our simulation results for the functio
g(z) corresponding to the cases considered in Fig. 1~a!. In
this figure we see thatg(z) has a large, finite value atz50,
which indicates that every particle has a large probability
finding another particle in its same plane. This is possi
since the particles are distributed over a broad space in
radial direction, such that there is not an effective volu
exclusion effect between the particles in thez direction. On
the other hand, we see that the oscillations ofg(z) are rather
small, indicating that the particles are quite uniformly d
tributed around the central particle, i.e., the axial pair cor
lations are rather weak. However, we notice that such co
lations are stronger as the value of the density decrea
This might seem contradictory since at larger densities
correlations should be stronger. This is true, however, for
full pair correlation functiong(r ) in an homogeneous sys
tem, but not necessarily for partial pair correlation functio
such asg(z), in an inhomogeneous system. In inhomog
neous systems, the competition between the pair poten
and the external field might yield the correlations to incre
in a given spatial direction, whereas decreasing in others
the present case we have that the particles are more con
for lower values ofnc* , which emphasizes the pair intera
tions along the axis and leads to stronger correlations in
direction.

For the highest concentration plotted in Fig. 1~a!, on the
other hand, the outermost maximum ofn(r) corresponds to
the cylindrical shell of largest radius, and hence, of larg
volume. In fact, it also contains most of the particles, wh
tend to occupy uniformly all the volume of this shell. Th
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allows the possibility that several particles occupy the sa
axial position ~at different anglesw), and this leads to a
weakening of the axial correlations. In order to check th
we calculated the axial correlations only among the partic
located within the outermost shell. The resultingg(z) hap-
pened to be virtually indistiguishable from the overall ax
correlation function plotted in Fig. 2~a!. This means that in-
deed, the axial structure is strongly dominated by the ou
most shell. Thus, even if the axial correlations within t
inner shells were stronger or dramatically different fro
those of this dominant shell, their contribution to the to
g(z) is actually very small, due to the overwhelming weig
of the latter. However, we also calculated the axial corre
tions within the inner shells, and we found that these cor
lations are in fact different, but not dramatically, and n
stronger, than those in the outermost shell.

FIG. 2. Axial correlation functions corresponding to the syste
in Fig. 1. ~a! R530s; ~b! R520s; ~c! R510s.
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The results plotted in Fig. 2~b! indicate that the trends ar
similar for the caseR520s. In this later case we see that th
reduction of the space only slightly emphasizes the corr
tion between the particles.

In Fig. 2~c! we present the results for the axial corre
tions for a highly confined system, i.e.,R510s. Here we see
that the axial correlations between the particles are m
stronger than in the previous cases. In fact, the curves co
sponding tonc* 5331024 andnc* 5631024 resemble very
much crystal-like structures. For these curves, the peaks
very high and the minima, at least the first two, virtua
reach zero. Recalling that the concentration profiles for th
two cases are single peaks in the center of the cylinder,
conclude that the axial correlations correspond mostly to
correlations of effectively one-dimensional systems. This
not strictly true, since the broadness of the concentra
profiles is finite. It is clear, however, that the 1D behav
predominates over such fluctuations. This idea is suppo
by the results plotted in Fig. 3, where we present the ac
mulated number of particles along thez axis,N0(z), which is
calculated through the relationN0(z)5*0

znlg(z0)dz0. From
this figure we see that the number of particles, under e
peak ofg(z), is approximately one.

Going back to Fig. 2~c!, it is interesting to notice that by
increasing the density fromnc* 5331024 to nc* 5631024

the peak of the concentration profile only increases its bro
ness by about 1s, whereas the first peak ofg(z) shifts to the
left by about 6s. This indicates that basically the system
being compressed in thez direction, and that the radial struc
ture is mainly dominated by the wall-particle interaction
Another interesting feature in this figure is the fact that
crystal-like structure disappears under a further increas
the density~for instance,nc* 5931024 in the figure!. By
looking at its concentration profile@see Fig. 1~c!# we see that
the density is so high in this case that the particles hav
accommodate in a cylindrical shell, allowing their mean d
tance along the axis to be reduced.

In addition to the features already shown, it is interest
to notice the virtual coincidence of the location of thefirst
peak of g(z) corresponding to the concentrationnc*
5331024 with the location of thesecondpeak for nc*
5631024, and with the location of thethird peak fornc*
5931024. This coincidence repeats again for the seco

FIG. 3. Accumulated number of particles along the axis for
systems corresponding to Fig. 2~c!; i.e., for the caseR510s in
Fig. 2.
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fourth, and sixth peaks of, respectively, the same concen
tions. This is another evidence of the essentially o
dimensional character of the distribution of particles ins
very narrow cylinders. Under such conditions, the mean p
ticle distance, which is also the distance between peak
g(z), is given by 1/pR2nc . Thus, the location of the ith peak
of a given concentrationnc , is zi(nc)5 i /pR2nc , and hence,
the i th peak of concentrationn1 will coincide with the j th
peak of concentrationn2 if i / j 5n1 /n2, as it is the case for
the peaks and concentrations referred to above.

C. Axial-angular pair correlations

So far we have shown our simulation results for the rad
and axial structure of the colloidal suspension, characteri
by the concentration profilen(r) and the axial pair correla
tion functiong(z), respectively. The first one gives informa
tion on the local density of particles at a given distance fr
the center of the cylinder, whereas the second gives the p
ability of finding particles along the axis, at a given distan
from a reference particle. As it was mentioned before,g(z)
does not take into account the displacement of the parti
from the axis, neithern(r) has information on the distribu
tion of particles alongz. To complete the picture, we hav
calculated the angular correlations between the partic
along thez axis. This has been made by computing the ax
angular correlation functiong(z,w), defined in Sec. II. This
function essentially measures the density of particles, fro
reference particle, as a function of the axial distance and
angle.

First of all let us show howg(z,w) looks for a system
where thez correlations are weak. For this we take the sy
tem defined byR530s andnc* 5931024, whose axial pair
correlation is plotted in Fig. 2~a!. Figure 4 showsg(z,w) for
this system. From this figure we see that this function
mainly a flat surface, with only small oscillations near t
origin, which indicates that the correlations are rather we
both in thez and w directions. The flatness of the surfac
comes from the fact that particles are allowed to move ove
very wide region in the cylinder, as it is shown by its corr
sponding concentration profile, and thus, a particle ha
large probability of finding particles at almost any distan
and/or angle.

Let us mention that just likeg(z) in Figs. 2~a! and 2~b!,
the overall axial-angular correlation functiong(z,w) in Fig.

e
FIG. 4. Axial-angular pair correlation function for the param

etersAp5400, Aw5400, zD50.15, R530s, andnc* 5931024.
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4 is the result of the axial-angular correlations of the partic
in each cylindrical shell corresponding to the various pe
of n(r). Thus, it is interesting to consider theg(z,w) for
each individual shell, which we also calculated. Also he
we found that theg(z,w) of the outermost shell strongl
dominates the structure of the overallg(z,w). Thus, for ex-
ample, for the outermost shell,g(z50,w) exhibits the same
sequence of maxima as observed in the overallg(z50,w) in
Fig. 4. The inner shells in contrast, exhibit a sequence wi
smaller number of maxima. A simple semiquantitative exp
nation of the number of maxima ing(z50,w) for each shell
is the following:

If we carefully observe Fig. 4 forz50, we see that there
are 13 maxima. This indicates that, in addition to the part
located atz50 ~and w50), the probability to find anothe
particle at the same axial positionz50 peaks at 13 evenly
spaced angular locations. This feature is inherited dire
from theg(z,w) of the outermost shell. For this shell, we ca
estimate by 2pr1 / l the number of particles that could b
accommodated in a circle of diameterr1 equal to the posi-
tion of the outermost peak ofn(r), if they lied a distancel
5(nc* )21/3 apart. From Fig. 1~a! for nc* 5931024, for ex-
ample, we find that this number is approximately 12. This
an estimate of the minimum number of particles of the o
ermost shell that could coexist at the same axial position.
said above, our simulation of theg(z,w) for this shell leads
to a number of 14~including the reference particle atw
50), i.e., 2 particles more than our estimate 2pr1 / l . A
similar estimate can be made for the inner shells, for wh
we also calculatedg(z,w). For these, we also found that th
number of maxima ofg(z50,w), plus the reference particle
exceeded our estimate by about 2. This then means
g(z,w) for the inner shells do differ from each other an
from that of the outermost shell. However, the over
g(z,w) only reflects the main features of the latter. A simil
scenario was also observed fornc* 5631024, and for the
systems withnc* 5631024 and 931024 for the smaller di-
ameterR520s.

Still more interesting is the case when the suspensio
highly confined, as in Figs. 1~c! and 2~c!. In those cases we
found that the highly restricted space in which the partic
were confined had very important effects on the radial a
axial structure of the suspension, and something simila
expected to happen for the angular correlations.

Figure 5~a! illustrates the behavior of the axial-angul
pair correlation functiong(z,w) for the system defined by
R510s and nc* 5331024. Here we see a rather differen
qualitative and quantitative behavior than in the case p
sented just above. This surface is not flat anymore. Instea
presents strong oscillations along thez axis, which indicates
that the particles are highly correlated along this coordin
a feature already pointed out when discussed the axial
relations corresponding to this system. On the other hand
surface does not have oscillations along thew axis, which
indicates that the particles are still angularly uncorrelat
Recalling that in fact the particles are confined into a v
narrow region at the center of the cylinder and that they
widely spaced in thez direction, it is not surprising that the
particles are able to sample all the values ofw with equal
probability.
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However, one should expect that the particles beco
correlated on the angular direction as a result of stron
interactions between the particles when the density increa
This is illustrated in Fig. 5~b! for the system with density
nc* 5631024. In this figure we see that a well define
single peak has appeared in the surface. Such a peak
though broad, has its maximum atw5p. Beyond this peak,
in the z direction, we see another broader peak atw52p
[0, then another atw5p and so on. Notice that the heigh
of these peaks, i.e., the angular correlations, weaken ra
rapidly with the axial distance. The interpretation of su
peaks is as follows: standing on the reference particle,
facing the center of the cylinder, the first peak indicates t
the first neighbors~along thez axis! are mainly located just
in front of the particle (w5p), the second neighbors ar

FIG. 5. Axial-angular pair correlation function for different den
sities and forR510s. ~a! Upper figure:nc* 5331024; ~b! middle
figure: nc* 5631024; ~c! lower figure: nc* 5931024. The other
parameters areAp5400, Aw5400, andzD50.15.
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located just above the central particle (w50), the third
neighbors are in front, and so on. This pattern clearly in
cates that particles arrange themselves into a structure
looks very similar to a zig-zag, as seeing from the cen
particle. In some sense, this process, in which the sys
goes from a state in which the particles are basically confi
into a line, to a state in which the structure brakes into
zig-zag, i.e., into a two-line structure, resembles a buckl
transition, although in this case the transition is observe
the level of the pair correlations.

It is interesting to notice that such a transition only i
creases a little the region occupied by the particles in thr
direction, but compresses the structure importantly in thz
direction, as the comparison between the corresponding
centration profiles and axial correlations in Figs. 1~c! and
2~c! indicates. This means that up to these densities, the
dial structure is mainly dominated by the repulsive inter
tion exerted by the wall. Beyond a certain threshold dens
the interaction between the particles becomes so strong
the particles have to leave the center of the cylinder, prod
ing the shell of particles shown in Fig. 1~c! for the casenc*
5931024. In Fig. 5~c! we plot the correspondingg(z,w)
for this system. Although one can clearly appreciate
strong angular correlations among the particles, this fig
does not show well defined peaks as in the previous sys
In fact, the axial correlations for this case@see Fig. 2~c! for
nc* 5931024# have an anomalous behavior in the sense t
unlike a typical pair correlation function, the second peak
higher that the first, the third is higher than the fourth, e
This behavior might indicate that the system is undergoin
structural transition, since by further increasing the dens
the system changes to a structure in which a well defi
sequence of peaks appear, corresponding to the next
pected structure. Figure 6~a! illustrates this for a system with
nc* 51131024. If we still increase further the density, a
illustrated in Fig. 6~b!, it is possible to get even a period
array of peaks, i.e., a structure whose angular correlat
become of very long range, indicating that the system
close to form an ordered array on a cylindrical surface~or
better said, on a cylindrical shell! since for this value of the
density (nc* 51731024), the density profilen(r) still exhib-
its only a single peak. Although not shown here, this perio
array on a cylindrical shell is not the final state of the syst
since under further increasing the density of particles,
radial structure evolves from the single-peak concentra
profile to a two-peak concentration profile, very similar
the curve illustrated in Fig. 1~b! for the casenc* 5931024

andR520s.

IV. SUMMARY

In this work we have presented a Monte Carlo study
the structure of a model colloidal suspension confined i
cylindrical pore. The interaction between the particles w
assumed to be the repulsive part of the DLVO potential, i
a hard sphere plus a Yukawa potential, and the corresp
ing choice was made for the wall-particle interaction. T
structure of the suspension, on the other hand, has bee
scribed through the local concentration profile and throu
contracted versions of the inhomogeneous pair correla
function between the particles. These correlations functi
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allowed us to illustrate the ordering developed by these s
tems under conditions of strong confinement.

The structure of the suspension was studied as a func
of the concentration of particles and the size of the pore,
depending on the combination of the parameters defining
system a variety of structures were observed. For the c
centration profile, we found that the suspension evolves fr
a layered structure in which the particles occupy most of
available radial space in the cylinder, up to a structure
which the particles are completely confined to the cente
the cylinder. In this process, the system adopts structure
which, for instance, the particles are restricted to move i
cylindrical shell, or also disconnected structures in wh
one part of the suspension is confined to the cylinder a
whereas another part is confined to a cylindrical shell. T
appearance of such structures has been associated t
competition between the repulsive interaction between
particles, and the confining interaction exerted by the wa

As for the correlations between the particles, in this wo
we have defined two quantities that give information on
relative ordering between the particles, namely, the axial p
correlation function,g(z), and the angular correlation func
tion, g(z,w). Through these functions we have shown th
under severe confinement, the system develops a w
defined axial and angular ordering. Thus, we have sho
that for very low concentrations the particles form a 1
structure where there are clear and strong axial correlati
but the angular correlations are absent. For larger value
the concentration of particles in the cylinder, the axial stru

FIG. 6. Axial-angular pair correlation functions for the sam
parameters as in the previous figure and for two different densi
~a! Upper figure:nc* 51131024; ~b! lower figure:nc* 51731024.
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ture weakens and the particles develop well defined ang
correlations, in such a way that the structure of the susp
sion goes from a state in which all the particles are align
along thez axis, to a state in which the linear structure brea
into a zig-zag. For larger values of the concentration
found that the angular correlations become longer rang
and the particles practically form an ordered array on a
lindrical shell. In spite of this angular ordering, we ha
shown that the axial correlations are dominated by the
character of the system when the suspension is strongly
fined.
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