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Axial and angular correlations between colloidal particles in narrow cylindrical pores
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In this work we present a study of the local structure of a model colloidal suspension highly confined inside
a cylindrical pore. Such a study is based in Monte Carlo computer simulations, using the repulsive part of the
Derjaguin-Landau-Verwey-Overbeek potential as the pair interaction between particles. The structural proper-
ties calculated here are the concentration prafi{lg), the axial pair correlation functiog(z), and the axial-
angular pair correlation functiog(z,¢). The behavior of these quantities is analyzed as a function of the
density of colloidal particles in the restricted space, and as a function of the size of the pore.

PACS numbd(s): 82.70.Dd, 05.40-a

[. INTRODUCTION between two particlesu(r), as the repulsive part of the
DLVO potential, i.e.,
When a colloidal suspension is under the influence of an
external field the local density of particles, uniform in the _ exg —zp(rio—1)]
X . . I Bu(r)=Buys(r)+A, , (L)
absence of the field, varies from point to point in spptle (rlo)
The external field can be gravity, an electrical field applied . N )
on a charged system, or even a wall that confines the suspefi€r€Uns(r) is the hard-sphere potentig,” “=kgT, with
sion within a given region of space. In the last few yearske being Boltzmann’s constant andthe temperature, and
theoretical and experimental work has been carried out ifp=x0 With « being the inverse Debye length andthe
this class of systemi@,3]. On the experimental side, by us- diameter of the par_ucles{\p is, in units ofkgT, the potentla_l
ing optical techniques such as laser trapping and videom@€nergy of two partlc_les at contact. As for the wall-particle
croscopy, the effective two-dimension(@D) static structure ~ Potential ¥ (r), we will use
and the effective 2D interaction potential of colloidal par-
ticles confined between two glass plates have been measured B (p)=A lo(xp) R’ 1.2
[3]. On the theoretical side, employing theoretical schemes, P WIO(KR’)—l’ ' '
mainly borrowed from the theory of simple liquids, and at
the Derjaguin-Landau-Verwey-Overbe¢RLVO) level of  with p being the distance from positianto the cylinder’s
description for the pair potential between partidlés], the  axis. This form of the potential derives from solving the
concentration profile of colloidal suspensions in front of alinearized Poisson-Boltzmann equation for an electrolyte
wall, or confined in a slit pore, has been calculated and comeonfined inside the charged cylinder. In this equatig(ix) is
pared with simulation result?]. At this same level of de- the zeroth-order modified Bessel function, @idis the dis-
scription the equilibrium structure of a colloidal suspensiontance from the cylinder axis to the point at which a particle is
confined inside a cylindrical pore has also been stufiéd  in contact with the cylinder’s inner hard wall. Thus,Rfis
in terms of the local concentration profile of the particles. the actual radius of the cylinder, th&i=R— ¢/2. In units
In the present work we will be concerned with the sameof kT, we have thatA,, in Eq. (1.2) is the electrostatic
system, namely, a colloidal suspension confined in a cylinpotential of a particle in contact with the cylinder wall, re-
drical pore, but here we study the structure of the suspensioferred to the potential at the center of the cylinder.
in terms of the pair correlations between the particles, and
r)ot only lof the wall-particle corrglatior_ﬁe., the cc.)ncentra—. Il. STRUCTURE AND SIMULATION DETAILS
tion profiles. In particular, we will be interested in the pair
correlations along the axis, and also in the angular pair cor- In this work we perform Monte Carlo simulations in the
relations when the colloidal suspension is under severe coNVT ensembld8]. To do this, we build a cylindrical simu-
finement, for which we will employ a standard Monte Carlo lation box whose length is calculated through the relation
(MC) simulation techniqués]. =N[7R?n.]" %, whereN is the number of particles used in
As in previous work[6], the system we have in mind the simulation runsR is the radius of the cylinder, ant, is
consists of colloidal particles of charg@ suspended in a the number density of particles in the cylinder. In this way,
polar solvent, and confined in the interior of a very longthe volume of the basic simulation box\fs= wR?L. In order
cylindrical capillary with surface charge.. Following Ref.  to minimize edge effects due to the finite size of the simula-
[6] we will base our study on the DLVO level of description tion box, conventional periodic boundary conditions in the
for the particle-particle interaction, and for the wall-particle direction have been usg8]. Once the interaction potentials
interaction. Thus, we shall model the interaction potentiahave been given, thi particles are first randomly placed in
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the simulation cell, and then are allowed to move according g(z, ¢)= n, h(z,¢)

to the Monte Carlo scheme, until equilibrium is reached. Our

criterion for the equilibrium is the stabilization of the fluc- _ 2 . do-d

tuations of the potential energy. Once equilibrium is reached, =N," | 97(p1.p2,Z.9)N(p2)N(p2) p1p2dp1dp,

further configurations are generated in order to calculate the (2.4

properties of interest. '
The basic structure of the colloidal suspension inside theyith n ~=N/27L), which satisfies the normalization condi-

cylinder is given by the one-particle correlation function tjgn

n(r) (the concentration profijeand by the two-particle dis-

tribution functionn®(r,r’) [9]. Due to the symmetry of the

system the concentration profile becomes a function of the f n.g(z,¢)dzdp=N—-1. 29

distance to the cylinder’s axis, i.ea(r)=n(p). In order to

calculate the simulatedl(p) we divide the simulation box in  Equation(2.5) is equivalent to the normalization condition

concentric cylindrical shells of length, radiusp, and width  that the well-known radial distribution function satisfies for

Ap. We then count the number of particlsi§p) within the  an homogeneous simple fluj@]. In fact, from Eq.(2.5 we

volumeAV=r{(p+Ap)?—p?]L, and then compute the av- see thatg(z,¢) is the factor that modulates, to give the

erage local densityn(z,¢) in the volume element around the point
(z,9). Thus,g(z,¢) determines the pair angular correlations
(p) along the axis of the cylinder.
n(p)= < AV > : 2.9 In its turn, g(z,¢) also allows the definition of another
conf

pair correlation function, namely, the axial pair correlation

o function, g(z), through the relation
where the angle bracket§.,,s indicate an average over 9(2) g

many simulated configurations. 1 L
On the other hand, the inhomogeneous pair correlation g(Z)ZZ—J g(Z,<p)d<p=Nf n(z,e)de, (2.6
function g@(r,r")=n®(r,rY[n(r)n(r’')]"* is a more dif- m
ficult quantity to calculate in the simulations. Instead of\yhich satisfies
working with the full pair correlation function we will work
with contracted versions of this function. The key to the
appropriate definition of these correlation functions is the f ng(z)dz=N-1, 2.7
exact normalization conditiofB]

wheren, =N/L is the number of particles per unit length,

e., the lineal mean number density. As we see from Eq.
Np(Np = 1):f f n(ry,rz)drydr, (2.7), g(2) determines the pair correlations along the axis of
the cylinder.
:f fg(z)(rl,rz)n(rl)n(rz)drldrz, The determination of these correlation functions in the
simulations is based on the definitions above. Operationally,
(2.2) the axial pair correlation functiog(z) is defined through the
relation
whereNj, is the number of particles in the volumg,. By N(2)
applying this later equation to our simulation box we see that (2) < > , 2.9
it is possible to define the function NAV/

1 where AV=7R?Az. Here N(2) is the number of particles
n(z,¢)= Nf g@(ry,r)n(p)N(p,) p1prdpidp,dzide; inside a disk of radiuf® and widthAz, located at a distance
z from the central particle which is located aty(zy=0,¢q

2L =0), i.e., the origin of coordinates is located in the center of
= )f 9@(p1.p2.2,0)n(p1)N(py) the cylinder in such a way that the reference particle is lo-
cated along the axis, and in the plane=0, regardless of its
X p1p2dpdp,, (2.3)  distancep to the axis. From its definitiorg(z) gives infor-

mation of the ordering along theaxis.
where we have used the fact that, due to the symmetry of the On the other hand, the axial-angular correlation function
system, the functiong®(r;,r,) can be writen as 9(z.¢) can be determined through the relation
9@ (p1,p2.2,¢), with z=z,—z; and o=@, — ¢;. From its
definition,n(z,¢) is the mean particle density in the volume 0(z,0)= < N(Z,<P)> 2.9
element(a disk delimited by the surfacezandz+dz, and NAV [ '
by the surfaces and ¢ +d¢, all these four surfaces mea-
sured from a particle that it is located at the pointQ,¢ whereAV=(R?/2)AzA ¢, andN(z,¢) is the number of par-
=0). The functiom(z, ¢) defined through Eq2.3) satisfies ticles laying in the region betweerandz+ Az, and forming
the conditionn(z—,¢)=N/2x7L. This limiting condition an angle betweer and ¢+ A¢ with the central particle
allows us to define the function located at the pointdy,zo=0,0=0). The function thus de-
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fined gives information on the angular order between the 6 T - T T
particles and on how this order changes along the axis of the Rezos @
cylinder. I - '
n¥=3x10"" /
F—— n;":6x104 !
lll. RESULTS | ==~ nioxi0” Al
As it was mentioned before, our system consists of a % !

model colloidal suspension confined in the interior of a cyl-
inder, and the particle-particle and wall-particle interactions
are given by Eqgs(1.1) and(1.2). In this work we will focus

on the evolution of the structure of the particles as a function
of n. and of the size of the cylindeR. This means that we
will fix all the other parameters defining the system, and will
keep track of the structure as we let bathandR to vary.
The values of the parameters we will keep fixed &g
=400, A,=400, andzp=0.15. For the simulation runs we 15
useN=200 particles. In every run the initial configuration
was set to equilibrate over 10 000 Monte CaX@ycles(in

the basic MC cycle, a particle is selected randomly for dis-
placement; arN cycle consists ofN basic MC cycles and
150000 furtherN cycles were generated for the statistical
averages. For the averages, we took the configurations gen-
erated after everil cycle.

n*(p)

A. Concentration profiles

Let us first present the corresponding results o p)
=n(p)o? as we vary the mean number density of particles
inside the cylinder and the size of the cylinder. The first
process can be achieved by externally compressing the col-
loidal suspension, or if we imagine that the cylinder is con-
nected to a reservoir with bulk density, by increasing, .

The other process can be achieved by connecting cylinders
of different sizes to the reservoir.

Figure 1 is a sequence in which we illustrate the behavior
of the concentration profile as a functionrdf=n.o* andR.

In each figure the number density} takes the valuesy
=3x10"% n*=6x10"% n*=6x10"* whereasR takes
the valuesR=300, R=200, and R=100. Let us discuss
briefly the features oh* (p) appearing in this figure.

Figure Xa) corresponds t&®=300. Here we see that, as a
result of increasin@? , the main peak ofi* (p) is displaced
towards the wall, whereas the height of the peaks increases.
Since the height of the curves indicates how concentrated is
the system in a given point, it is readily seen that the par- FIG. 1. Reduced concentration profiles* (p)=n(p)c®
ticles are structured in layers, which is one of the most in{x10% for a system with parameters, =400, A, =400, z,
teresting features of the concentration profiles. It is also evi=0.15.(a) R=300; () R=200; (c) R=100.
dent that this layering structure is emphasized as the patrticle
density increases since the height of the peaks becon@ofiles have fewer peaks, compared with the ddse300,
higher. These effects are the result of the equilibrium of twoalthough the height of the different peaks is much higher,
opposite trends, one which tends to confine the particles tevhich means that the layering structure is much more pro-
the center of the cylinder and that is due to the interactionounced in this case. It is interesting to see that the concen-
with the wall, and another in which the particles tend totration profile forn* =6x 10 * consists of two disconnected
occupy as much space as possible as a result of the repulsivegions, one high single peak at the center of the cylinder
interactions between them. This tendency towards expansiand one single peak located&t 8.50, leaving a gap in the
is higher asn? increases, since the mean distance betweeregion 40<p<60. In the central peak the particles are ar-
particles is reduced. ranged along the axis, with little space on the radial direc-

The effects on the concentration profile due to the reduction, whereas the particles in the other peak are arranged in
tion of the available space is illustrated in Figb)L In this ~ such a way that they form a cylindrical shell of widitp
caseR=200 and the rest of the parameters were kept con~2.5¢0, and centered ap~8.50. On the other hand, the
stant. From this figure we see that the different concentratiosurve correspondingi =3x10"4, earlier consisting of a

15

©  Relgs

n#=3x10"
— — n*=6x10"

- -~ n*=9x10"
(Y

n*(p)

p/c
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two-peak structure, now has one single peak. In this case, T T '

particles only arrange themselves in a cylindrical shell of (@

width Ap~20, centered ap~7o. [
By further reducing the size of the pore we see that the

trends just discussed are emphasized. Figuicg dresents R s

the concentration profiles for the caBe=100. In this case =

we see that the concentration profiles consist of a single peak 2

for all the three values ofi; used here. In this case, how- \ R=30c

ever, the particles of the suspension are highly confined since n:‘=3x101

the gap between the particles and the wall is abautiée., - — — n=6x10
more than half of the cylinder radius. The figure shows that - n=ox10
n*(p) changes from a two-peak structure in Figb)l to a 0.0 0 1'0 2'0 3'0 2

one-peak structure in the current figure for the cade
=9Xx10 % On the other hand, the structure fof =3

X 10 % and n* =6x10"* consists of a single peak at the
center of the cylinder, sharper for* =3x10 * than for ®)
n*=6x10*. As we will see later, the confinement of the
particles into self-confined structures has important effects
on the correlations between particles.

z/C

o
0
B. Axial pair correlations R=20G

In Sec. lll A the main features of the concentration profile n*=3x10"
were shown. Howeven(p) comes from the average of the — — n*=6x10"
positions of the particles without taking into account their === n*=9x10”
relative order. Thus, it only gives information of the average 0.0 P R R
local density of particles as a function of the distapdeom 0 10 20 30 40

the center of the cylinder. In order to get more information z/o

about the three-dimensionédD) ordering between the par-
ticles we now present our results for the axial pair correlation
function, g(z), for the cases presented in Fig. 1.

In Fig. 2(a) we plot our simulation results for the function
g(z) corresponding to the cases considered in F{@).1n
this figure we see thaj(z) has a large, finite value at=0,
which indicates that every particle has a large probability of
finding another particle in its same plane. This is possible
since the particles are distributed over a broad space in the
radial direction, such that there is not an effective volume
exclusion effect between the particles in thdirection. On
the other hand, we see that the oscillationg @) are rather
small, indicating that the particles are quite uniformly dis-
tributed around the central particle, i.e., the axial pair corre-
lations are rather weak. However, we notice that such corre- . . . .
lations are stronger as the value of the density decreases. F_IG. 2. Axial corr_elatlon funct!ons corresponding to the systems
This might seem contradictory since at larger densities thé’ Fig. 1. (& R=300" (b) R=200; (¢) R=10o.
correlations should be stronger. This is true, however, for thellows the possibility that several particles occupy the same
full pair correlation functiong(r) in an homogeneous sys- axial position (at different anglesp), and this leads to a
tem, but not necessarily for partial pair correlation functionsweakening of the axial correlations. In order to check this,
such asg(z), in an inhomogeneous system. In inhomoge-we calculated the axial correlations only among the particles
neous systems, the competition between the pair potentialscated within the outermost shell. The resultigtz) hap-
and the external field might yield the correlations to increasgyened to be virtually indistiguishable from the overall axial
in a given spatial direction, whereas decreasing in others. lgorrelation function plotted in Fig.(8). This means that in-
the present case we have that the particles are more confingded, the axial structure is strongly dominated by the outer-
for lower values ofny , which emphasizes the pair interac- most shell. Thus, even if the axial correlations within the
tions along the axis and leads to stronger correlations in thisiner shells were stronger or dramatically different from
direction. those of this dominant shell, their contribution to the total

For the highest concentration plotted in Figa)l on the  g(z) is actually very small, due to the overwhelming weight
other hand, the outermost maximumrdfp) corresponds to of the latter. However, we also calculated the axial correla-
the cylindrical shell of largest radius, and hence, of largestions within the inner shells, and we found that these corre-
volume. In fact, it also contains most of the particles, whichlations are in fact different, but not dramatically, and not
tend to occupy uniformly all the volume of this shell. This stronger, than those in the outermost shell.

2(2)
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) ) FIG. 4. Axial-angular pair correlation function for the param-
FIG. 3. Accumulated number of particles along the axis for theetersAp:400 A, =400, z,=0.15, R=300, andn* =9x 10~
, ) 15, , c .

systems corresponding to Fig(c® i.e., for the caseR=10c in
Fig. 2.
9 fourth, and sixth peaks of, respectively, the same concentra-
The results plotted in Fig.(B) indicate that the trends are tions. This is another evidence of the essentially one-
similar for the cas@®= 200 In this later case we see that the dimensional character of the distribution of particles inside
reduction of the space only slightly emphasizes the correla¥€ry narrow cylinders. Under such conditions, the mean par-
tion between the particles. ticle distance, which is also the distance between peaks in
In Fig. 2c) we present the results for the axial correla-9(2). is given by 1#rR?n. Thus, the location of thef peak
tions for a highly confined system, i.&=10s. Here we see  Of @ given concentration, is z(nc) =i/7R"n., and hence,
that the axial correlations between the particles are muckheith peak of concentration, will coincide with thejth
stronger than in the previous cases. In fact, the curves corr@eak of concentration, if i/j=n,/n,, as it is the case for
sponding ton* =3x 10 4 andn* =6x10"* resemble very the peaks and concentrations referred to above.
much crystal-like structures. For these curves, the peaks are _ _ _
very high and the minima, at least the first two, virtually C. Axial-angular pair correlations

reach zero. Recalling that the concentration profiles for these gg far we have shown our simulation results for the radial

two cases are single peaks in the center of the cylinder, wgnq axial structure of the colloidal suspension, characterized
conclude that the axial correlations correspond mostly to Paipy the concentration profila(p) and the axial pair correla-
correla'tions of effeptively one-dimensional systems. This' ISion functiong(z), respectively. The first one gives informa-
not strictly true, since the broadness of the concentratiogon on the local density of particles at a given distance from
profiles is finite. It is clear, however, that the 1D behavior,e center of the cylinder, whereas the second gives the prob-
predominates over sug:h fI.uctuatlons. This idea is supportegbi”ty of finding particles along the axis, at a given distance
by the results plotted in Fig. 3, where we present the acCUgom ' reference particle. As it was mentioned befg)
mulated number of particles along ta@xis,No(2), whichis  goes not take into account the displacement of the particles
calculated through the relatido(2) = Jn9(2o)dzo. From  om the axis, neithen(p) has information on the distribu-
this figure we see that the number of particles, under eacfion of particles along. To complete the picture, we have
peak ofg(z), is approximately one. calculated the angular correlations between the particles,
Going back to Fig. &), it is interesting to notice that by ajong thez axis. This has been made by computing the axial-
increasing the density from =3x107* to nf=6Xx10"*  angular correlation functiog(z,¢), defined in Sec. II. This
the peak of the concentration profile only increases its broadunction essentially measures the density of particles, from a
ness by about &, whereas the first peak gi(z) shifts to the  reference particle, as a function of the axial distance and the
left by about Gr. This indicates that basically the system is angle.
being compressed in thedirection, and that the radial struc- First of all let us show howg(z,¢) looks for a system
ture is mainly dominated by the wall-particle interactions.where thez correlations are weak. For this we take the sys-
Another interesting feature in this figure is the fact that thetem defined byR=300 andn? =9x 10 *, whose axial pair
crystal-like structure disappears under a further increase Qfprrelation is plotted in Fig. ). Figure 4 showsj(z, ¢) for
the density(for instance,nf =9x10"* in the figure. By  this system. From this figure we see that this function is
looking at its concentration profilsee Fig. {c)] we see that  mainly a flat surface, with only small oscillations near the
the density is so high in this case that the particles have terigin, which indicates that the correlations are rather weak
accommodate in a cylindrical shell, allowing their mean dis-hoth in thez and ¢ directions. The flatness of the surface
tance along the axis to be reduced. comes from the fact that particles are allowed to move over a
In addition to the features already shown, it is interestingvery wide region in the cylinder, as it is shown by its corre-
to notice the virtual coincidence of the location of st  sponding concentration profile, and thus, a particle has a
peak of g(z) corresponding to the concentration; large probability of finding particles at almost any distance
=3X10 % with the location of thesecondpeak for n¥ and/or angle.
=6x10 %, and with the location of théhird peak forn} Let us mention that just likg(z) in Figs. 2a) and 2b),
=9x 10 *. This coincidence repeats again for the secondthe overall axial-angular correlation functigifz, ¢) in Fig.
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4 is the result of the axial-angular correlations of the particles .
in each cylindrical shell corresponding to the various peaks
of n(p). Thus, it is interesting to consider thggz, o) for
each individual shell, which we also calculated. Also here,
we found that theg(z,¢) of the outermost shell strongly
dominates the structure of the overgliz, ¢). Thus, for ex- e
ample, for the outermost sheli{z=0,¢) exhibits the same 25
sequence of maxima as observed in the ovg@k 0,p) in
Fig. 4. The inner shells in contrast, exhibit a sequence witha <
smaller number of maxima. A simple semiquantitative expla-
nation of the number of maxima ig(z=0,¢) for each shell

is the following:

If we carefully observe Fig. 4 foz=0, we see that there
are 13 maxima. This indicates that, in addition to the particle
located atz=0 (and ¢=0), the probability to find another
particle at the same axial positia+0 peaks at 13 evenly
spaced angular locations. This feature is inherited directly
from theg(z, ¢) of the outermost shell. For this shell, we can
estimate by Zrp,/l the number of particles that could be
accommodated in a circle of diameter equal to the posi-
tion of the outermost peak af(p), if they lied a distancé
=(n¥) 13 apart. From Fig. (a) for n* =9x 10 4, for ex-
ample, we find that this number is approximately 12. This is
an estimate of the minimum number of particles of the out-
ermost shell that could coexist at the same axial position. As
said above, our simulation of thggz, ¢) for this shell leads
to a number of 14(including the reference particle at
=0), i.e., 2 particles more than our estimater@ /I. A
similar estimate can be made for the inner shells, for which
we also calculated(z,¢). For these, we also found that the
number of maxima of(z=0,¢), plus the reference particle,
exceeded our estimate by about 2. This then means that
0(z,¢) for the inner shells do differ from each other and
from that of the outermost shell. However, the overall s

T
e,

g(z,¢) only reflects the main features of the latter. A similar 29 m%'
scenario was also observed fof =6x10 %, and for the RSN m;
systems wittn¥ =6x 104 and 9x 10 * for the smaller di- BN /%& &
ameterR= 200 S < SN ©
Still more interesting is the case when the suspension is N K, © (2

highly confined, as in Figs.(&) and Zc). In those cases we
found that. the highly rest.rlcted space in which the pgrtlcles FIG. 5. Axial-angular pair correlation function for different den-
were confined had very |mpor'gant effects on the rac_haj a”_%ities and forR=100- (a) Upper figure:n* =3x 1074 (b) middle
axial structure of the suspension, and something similar iggyre: n* =6x 1074 (c) lower figure: n* =9x10™%. The other
expected to happen for the angular correlations. parameters aré, =400, A, =400, andzp=0.15.

Figure Fa) illustrates the behavior of the axial-angular
pair correlation functiorg(z,¢) for the system defined by However, one should expect that the particles become
R=100 and n}=3x10 % Here we see a rather different correlated on the angular direction as a result of stronger
qualitative and quantitative behavior than in the case preinteractions between the particles when the density increases.
sented just above. This surface is not flat anymore. Instead, Tthis is illustrated in Fig. &) for the system with density
presents strong oscillations along thexis, which indicates n*=6x10"*. In this figure we see that a well defined,
that the particles are highly correlated along this coordinatesingle peak has appeared in the surface. Such a peak, al-
a feature already pointed out when discussed the axial cothough broad, has its maximum @t 7. Beyond this peak,
relations corresponding to this system. On the other hand, thie the z direction, we see another broader peakpat2mT
surface does not have oscillations along thexis, which =0, then another ap= 7 and so on. Notice that the height
indicates that the particles are still angularly uncorrelatedof these peaks, i.e., the angular correlations, weaken rather
Recalling that in fact the particles are confined into a veryrapidly with the axial distance. The interpretation of such
narrow region at the center of the cylinder and that they ar@eaks is as follows: standing on the reference particle, and
widely spaced in the direction, it is not surprising that the facing the center of the cylinder, the first peak indicates that
particles are able to sample all the valuesgofvith equal  the first neighborgalong thez axis) are mainly located just
probability. in front of the particle =), the second neighbors are



PRE 62 AXIAL AND ANGULAR CORRELATIONS BETWEEN . .. 5185

located just above the central particle=0), the third &
neighbors are in front, and so on. This pattern clearly indi-
cates that particles arrange themselves into a structure that ~
looks very similar to a zig-zag, as seeing from the central _
particle. In some sense, this process, in which the system
goes from a state in which the particles are basically confined
into a line, to a state in which the structure brakes into a =%
zig-zag, i.e., into a two-line structure, resembles a buckling
transition, although in this case the transition is observed at
the level of the pair correlations.

It is interesting to notice that such a transition only in-
creases a little the region occupied by the particles inpthe
direction, but compresses the structure importantly inzhe
direction, as the comparison between the corresponding con-
centration profiles and axial correlations in Figgc)land
2(c) indicates. This means that up to these densities, the ra- =
dial structure is mainly dominated by the repulsive interac- .
tion exerted by the wall. Beyond a certain threshold density,
the interaction between the particles becomes so strong that
the particles have to leave the center of the cylinder, produc-
ing the shell of particles shown in Fig(d for the casen} s
=9x10"% In Fig. 5c) we plot the corresponding(z,¢)
for this system. Although one can clearly appreciate the =
strong angular correlations among the particles, this figure =
does not show well defined peaks as in the previous system.
In fact, the axial correlations for this capsee Fig. Zc) for
n} =9x 10 *] have an anomalous behavior in the sense that,
unlike a typical pair correlation function, the second peak is , ) ) )
higher that the first, the third is higher than the fourth, etc, F'G- 6. Axial-angular pair correlation functions for the same
This behavior might indicate that the system is undergoing arameters as |r1 ihe prewogjflgure and _for tvxfo*dlfferent din5|t|es.
structural transition, since by further increasing the density'® UPPer figure:ng =11x10°% (b) lower figure:ng =17>10"".
the system changes to a structure in which a well defined
sequence of peaks appear, corresponding to the next eallowed us to illustrate the ordering developed by these sys-
pected structure. Figured illustrates this for a system with tems under conditions of strong confinement.
n¥=11x10“ If we still increase further the density, as  The structure of the suspension was studied as a function
illustrated in Fig. @b), it is possible to get even a periodic of the concentration of particles and the size of the pore, and
array of peaks, i.e., a structure whose angular correlationdepending on the combination of the parameters defining the
become of very long range, indicating that the system isystem a variety of structures were observed. For the con-
close to form an ordered array on a cylindrical surfgoe  centration profile, we found that the suspension evolves from
better said, on a cylindrical shgkince for this value of the a layered structure in which the particles occupy most of the
density (i} =17x 10~ %), the density profilen(p) still exhib- available radial space in the cylinder, up to a structure in
its only a single peak. Although not shown here, this periodigvhich the particles are completely confined to the center of
array on a cylindrical shell is not the final state of the systenihe cylinder. In this process, the system adopts structures in
since under further increasing the density of particles, thavhich, for instance, the particles are restricted to move in a
radial structure evolves from the single-peak concentratiogylindrical shell, or also disconnected structures in which
profile to a two-peak concentration profile, very similar toone part of the suspension is confined to the cylinder axis,
the curve illustrated in Fig. (b) for the casen* =9x 10~ whereas another part is confined to a cylindrical shell. The
andR=200. appearance of such structures has been associated to the

competition between the repulsive interaction between the
V. SUMMARY particles, and the confining interaction exerted by the wall.
As for the correlations between the particles, in this work

In this work we have presented a Monte Carlo study ofwe have defined two quantities that give information on the
the structure of a model colloidal suspension confined in aelative ordering between the particles, namely, the axial pair
cylindrical pore. The interaction between the particles wasorrelation functiong(z), and the angular correlation func-
assumed to be the repulsive part of the DLVO potential, i.e.tion, g(z,¢). Through these functions we have shown that,

a hard sphere plus a Yukawa potential, and the correspondmnder severe confinement, the system develops a well-
ing choice was made for the wall-particle interaction. Thedefined axial and angular ordering. Thus, we have shown
structure of the suspension, on the other hand, has been d#éat for very low concentrations the particles form a 1D
scribed through the local concentration profile and througtstructure where there are clear and strong axial correlations,
contracted versions of the inhomogeneous pair correlatiobut the angular correlations are absent. For larger values of
function between the particles. These correlations functionghe concentration of particles in the cylinder, the axial struc-
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